

HAWKE'S BAY FUTURE FARMING TE MATAU A MAUI AHU WHENUA-HIKINA TAIAO

Carbon Positive

Regenerative cropping for intensive vegetable production

Alex Dickson and Dan Bloomer LandWISE

Ministry for Primary Industries Manatū Ahu Matua

Why?

Image from https://www.kraftheinzcompany.com/esg/sustainable-agriculture.html

Agriculture & Investment Services

Ministry for Primary Industries Manatü Ahu Matua

He Waka Eke Noa Primary Sector Climate Action Partnership

ge from https://hewakaekenoa.nz/

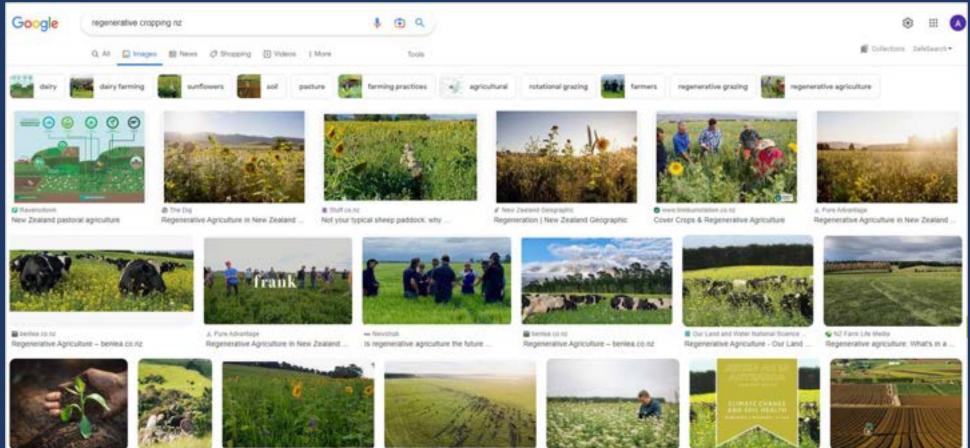

MCCAIN'S Regenerative Agriculture Framework.

Image from https://www.mccain.com/media/4036/mccain-foods-regenag-framework.pdf

Regenerating Aotearoa: Investigating the impacts of regenerative farming practices

Image from https://www.mpi.govt.nz/funding-rural-support/sustainable-food-fibrefutures/current-sff-futures-projects/sff-futures-projects-regenerative-farming-practices/

Why?

a Organics Astearba New Zestend

B Disf. in th

· Installing

O NZ Hereit

New Zasland Geographic

Why?

Government invests \$2m in regenerative farming trial for crops and vegetables

RNZ 14 Feb, 2023 94:59 AM ID 3 mins to read

Save A Share

One part of the trial will focus on reducing the use of herbicides, fungicides and insecticides. Photo / File

RNZ

The Government is backing a research project on regenerative farming practices of arable and vegetable crops in Hawke's Bay.

Minister of Agriculture Damien O'Connor announced \$2 million will be spent over six years on the New Zealand-first project.

> https://www.nzherald.co.nz/the-country/news/government-invests-2m-in-regenerative-farming-trial-forcrops-and-vegetables/ZQH6JOG36BGULDR5RFELL2O7GY/

Regenerating soil carbon in soils used for intensive field cropping

Can soil health and quality be improved by adopting methods used to sequester carbon through sustainable and regenerative practices?

Trial Design

Three farm system treatments compared:

- Fully conventional (current industry best practice)
- Fully regenerative (adopting core principles)
- A hybrid system (some conventional and some regenerative practices)

System Frameworks

Conventional	Hybrid	Regenerative
Current industry BMP	'Cherry-picking' management to achieve 'lower footprint'	5 core regen principles adapted to commercial vegetable production
Full input- full output	Some conventional practices + some regen practices	'Lower Input' (AgChem/synthetic fertiliser)
Crop management packages delivered by processor agronomists	Not full system changes- easy for growers to adopt changes	Reimagining the status quo
Plans created with processors, technical advisors	Plans created with processors, growers, technical advisors	Plans created with consultants/growers
Aim to make high profit margin	Aim to reduce environmental impact while retaining high profit margin	Aim to improve soil and plant health overtime to achieve long term improved profit, environmental, crop performance outcomes

Practices that degrade soil

CULTIVATION

BARE SOIL

COMPACTION

SURPLUS SOLUBLE NUTRIENTS

HERBICIDE, FUNGICIDE, INSECTICIDE

Regenerative **Practices**

Minimise Disturbance

Keep the soil covered

Keep living roots in the soil at all times

Grow a diverse range of crops

- Introduce grazing animals

MicroFarm Trial

- Testing over 6 years
- Effect of alternative management strategies on
 - Soil quality
 - Carbon levels
 - Nutrient supply
 - Water holding abilities
 - Need for external inputs
- Incorporate Mātauranga Māori principles

Baseline Sampling

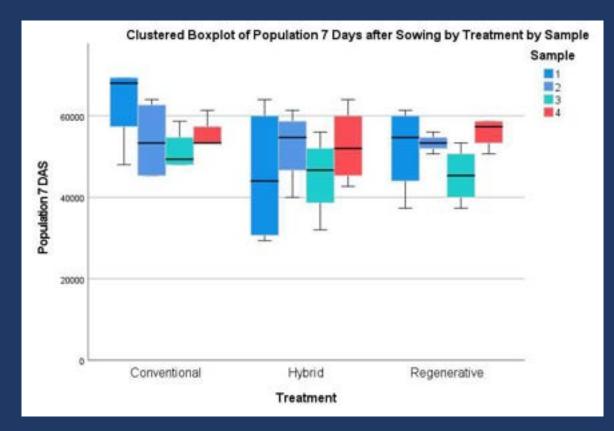
Carbon, Bulk density, Agg Stab, VSA, Worms, Soil moisture, eDNA, Yield, Quality, Gross margins,

Year 1 McCains Sweetcorn

- Carbon Sampling November 2022
- Planted 23rd December 2022
- Sweetcorn submerged briefly after Cyclone
- Harvested 11th April 2023
- 3 Treatments

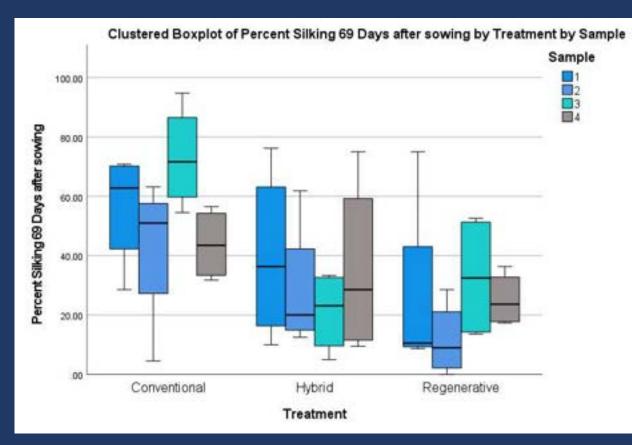
Year 1- McCains Sweetcorn

Planted 23rd December 2022

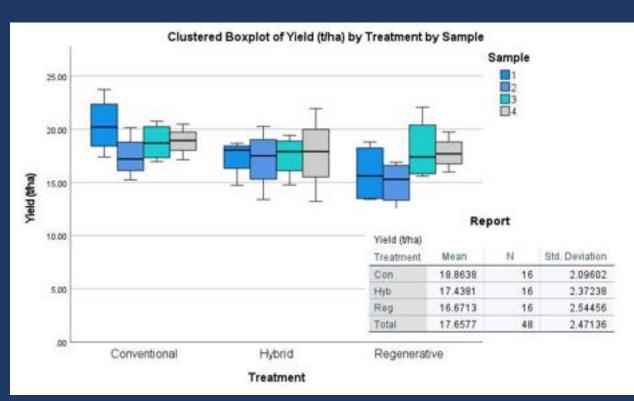


Year 1- McCains Sweetcorn

Planted 23rd December 2022



Germination


Silking

		Subsetfor alpha = 0.05				
Treatment	N	4	2			
Regenerative	56	23.9838	100			
Hybrid	16	31.2313				
Conventional	16		53.9106			
Big.		.619	1.000			

Yield

Tukey HSD*		Subset for alpha = 0.05			
Treatment	3N	1	2		
Regenerative	16	16.6713			
Hybrid	16	17,4391	17,4381		
Conventional	16		10.0630		
Big		.628	.209		

The Bottom Line

Practice	Conventional	Cost/ha	Hybrid	Cost/h	a	Regenerative	Cost	/ha		
Ground work	Aerator	\$ 205	.00 Aerator	\$	205.00	Aerator	\$	205.00		
3	Strip Till	\$ 180	00 Strip Till	\$	180.00	Strip Till	\$	180.00		
	Rotary Hoe	\$ 215	.00	\$			\$	-		
	Planting	\$ 260	00 Planting	5	260.00	Planting	\$	260.00		
Seed cost	Seed	\$ 600	.00 Seed	\$	600.00	Seed	\$	600.00		
Base Fert Cost	150kg lime/30kg SP90/10kg Boron	\$ 52	80 150kg lime/30kg SP90/10kg Boron	\$	52.80	150kg lime/30kg SP90/10kg Boron	\$	52.80		
Spreader Cost	Cart and spread	\$ 73	00 Cart and spread	\$	73.00	Cert and spread	¢	73.00	**	Open for
Compost (Product)		\$		\$	-	BioRich Compost at 25m3/ha	\$	1,375.00		
Spreader Cost		\$		\$	-	Cart and spread	¢	100.00	int	erpretation
Nutrition (Starter)	200kg/ha Cropzeal 20N	\$ 241	60 200kg/ha Cropzeal 20N	\$	241.60	150kg/ha Cropzeal 20N	\$	181.20		
Seed amendment	1000	\$		1		200gm/ha Trichoderma	\$	12.00		
Nutrition (AP 1)		s		s	÷.	BioAg Soil and Seed@ 8L/ha +	\$	84.00		
10 112		10		1		5kg/ha soluble humates	\$	28.75		
		\$		\$	+	Application cost	\$	50.00		
Nutrition (AP 2)		\$		\$	•	BioAg Root and Shoot 3L/ha	\$	31.50		
						Calcinit 20kg/ha	\$	33.20		
S. markener S.		\$		\$	-	Application cost	\$	50.00		
Nutrition (Side dressing)	250kg Urea/ha	\$ 243	.00 200kg urea/ha	\$	196.00	100kg Urea/ha	\$	98.00		
SD Spreader cost	Application	\$ 150	.00 Application	\$	150.00	Application	\$	150.00		
Post Emerge Herbicide	Arietta 0.2 L/ha (Topramezone)	\$ 87	48 Arietta (Topramezone) 0.2 L.ha	\$	87.48	Arietta (Topramezone) 0.2 L/ha	s	87.48		
Constraintensi andar	Atrazine 3.0L/ha	\$ 37	92 Kwickin	\$	12.00	Kwickin	\$	12.00		
	Kwickin	\$ 12	00	\$			\$	-		
Insecticide	Slugbait 10kg/ha	\$ 93	00 Slugbait 10kg/ha	\$	93.00	Slugbait 10kg/ha	\$	93.00		
Total Spend		\$ 2,456	80	\$	2,150.88		s	3,846.93	\$	2,746.93
Yield	18.86T	\$ 5,393	96 17.44T	5	4,987.84	16.67T	\$	4,767.62	\$	4,767.62
Gross Margin		\$ 2,937	16	\$	2,836.96		\$	920.69	5	2,020.69

Cover Crops

- What do we grow?
- How do we manage over winter?
 - Graze?
 - Grow biomass?
- How do we terminate?
 - What is being planted next?
- Plan will evolve over next 5 years

Practice	Conventional	Hybrid	Regenerative				
Post Harvest Residue Management	Mulch	Mulch	Mulch				
Cover crop planted	Annual ryegrass- moata	Annual ryegrass- moata	Oats + vetch + lupins				
Method of planting	Aerator + rotary hoe + roll + drill	Aerator + roll + direct drill	Aerator + roll + direct drill				
Livestock	Yes	No	No				
Planting fertiliser	100kg DAP/ha	100kg DAP/ha	Nil				
Liquids	Nil	Nil	5kg/ha Soil and Seed				
Weed control	See what weeds pop up- option to do broadleaf spray?	Nil? - option to spray out broadleaf	Nil				
Other Nutrients	N application after grazing?	NII?	300 kg Ag lime 30 kg Southern Humates raw humate 5 kg borate 5 kg Omnia soluble humic acid granules (at planting				
Method of terminating cover crop	Spray out	Strip spray/mulch	Mulch				
Method of planting tomatoes	Conventional transplant	Conventional transplant	Mulchtec Planter?				

Looking ahead-Tomatoes

- Planning to plant early November
- Harvest= 135 days
- Target approx. 100T paid yield
- What does management look like for each treatment?
 - Weed/pest/disease management
 - Cultivation
 - Nutrient management
 - Next years cover crop

Looking ahead- MulchTec Planter

